回首页 | 网站地图 |   Blog
客户评价
  • 委托文华轩公司博士老师设计一款matlab程序代码,经过博士老师的努力,调试结果表明非常吻合需求。对文华轩博士老师高水准的程序设计能力表示感谢。
    张博士
    来自: 中科院福建物构所
  • 和文华轩公司博士老师合作1年多了,无数的稿件经过博士老师的翻译,实践证明,文华轩博士老师学术论文翻译能力非常强,让人高兴。以后还选择文华轩公司学术论文翻译服务。
    梅子
    来自: 林肯大学
  • 论文问题让我困恼不已,在百度网上看到文华轩公司提供论文修改服务,实践证明,修改结果非常理想,让我非常满意。以后还选择文华轩公司论文修改服务。不想统计公司论文修改水准这么高。
    梁小姐
    来自: 华南理工大学
  • 碰到数据的处理难点。在文华轩博士老师的努力下,顺利解决问题。感谢博士高水准的服务。以后还选择文华轩数据处理服务。
    阔小姐
    来自: 新北
  • 碰到论文问卷统计分析难点,束手无策;在雅虎看到文华轩公司博士老师协助跑统计分析,在老师的努力下,终于解决了问题,了却我的心头之愿,真是感谢。
    史小姐
    来自: 高雄
  • 一组医学数据需要跑统计分析,选择文华轩统计公司的博士老师,在老师的辅导和帮助下,顺利跑出结果,对文华轩博士老师的优质统计分析服务表示感谢。
    林小姐
    来自: 台北
  • 委托文华轩公司协助完成论文apa格式修改,在博士老师的努力下,格式修改得到规范处理,让我学习到不少东西,感谢。
    张小姐
    来自: 高雄
  • 委托博士老师设计OFDM系统,然后以BPSK/QPSK 调变 来跑出BER IFFT的SIZE是256bits,CP是32bits。实践证明,用matlab模拟的波形吻合要求。在此表示感谢。
    张先生
    来自: 新北
  • 委托文华轩公司博士老师协助设计vensim模型的设计,结果比较满意。
    林先生
    来自: 台北
  • 委托文华轩博士老师设计德尔菲问卷和问卷数据分析,结果比较满意,非常感谢。
    杜小姐
    来自: 新北
  • 委托文华轩统计公司完成大陆的问卷调查和问卷数据分析服务,结果比较满意。文华轩公司优质的问卷调查水准让人满意,以后还推荐文华轩公司。
    杨小姐
    来自: 雄狮旅游集团
  • 委托文华轩博士老师协助完成数据的处理和数据的分析。在老师的协助下,顺利完成,结果比较满意。
    林先生
    来自: 新北
  • 碰到论文摘要翻译,一点点小问题难倒我,在文华轩博士老师的协助下,把摘要顺利翻译完成,感谢老师的协助。
    陈老师
    来自: 吉林师范大学
  • 委托文华轩博士老师完成问卷数据的统计分析;在老师的协助下,完成了分析结果;比较满意;以后还推荐文华轩统计公司的问卷数据分析服务。
    陈博士
    来自: 台北护理健康大学
  • 碰到fuzzy delphi问卷数据分析,难倒我了,束手无策;在雅虎上看到文华轩公司提供论文数据分析协助服务,把数据发给老师,在老师的辅导和帮助下,顺利完成数据分析,对文华轩博士老师高水准的服务表示赞赏。
    沈博士
    来自: 新北
  • 有一组实验数据,需要跑数据分析和数据处理。委托文华轩公司博士老师协助完成,在博士老师的努力下,顺利完成,感谢文华轩博士老师高水准的数据分析能力。
    李小姐
    来自: 郑州烟草研究院
  • 设计一个贸易模型,需要协助完成matlab程序设计和仿真,在老师的努力下,得到顺利解决;对文华轩博士老师高水准的matlab程序设计能力表示赞赏。
    罗老师
    来自: 台湾大学
  • 碰到一组犯罪数据的处理,在文华轩博士老师的努力下,顺利完成,对文华轩博士老师高水准的数据处理能力表示赞赏!
    庄老师
    来自: 中国人民公安大学
  • 委托文华轩博士老师完成数据处理,结果比较吻合实际情况,感谢有这么好的老师辅导数据处理。对结果很满意。
    李小姐
    来自: 三军总医院
  • 委托文华轩公司博士老师完成学术论文翻译,在博士老师的努力下,顺利完成,价格不贵。感谢文华轩博士老师的协助。
    李博士
    来自: 中科院
  • 碰到论文的统计分析难点,自己解决不了;在百度上看到文华轩统计公司提供论文数据的统计分析协助,把数据发给博士,在博士老师的辅导和帮助下,顺利跑出结果,感谢文华轩公司博士老师的辅导和协助。
    陆小姐
    来自: 中国人民大学
  • 委托文华轩博士老师协助翻译一篇硕士论文,翻译的结果让人满意,感谢文华轩博士老师的协助。以后还推荐文华轩学术论文翻译服务。
    李小姐
    来自: 广州
  • 碰到专业的论文问卷数据统计分析,素手无策;在网上看到文华轩公司博士老师提供论文问卷数据统计分析协助,把原始数据和问卷表发给博士老师,在老师的努力和辅导下,顺利通过答辩。感谢文华轩博士老师论文问卷数据分析协助服务。
    卢小姐
    来自: 中国人民大学
2018-04-15 11:38:17 | 数据处理和数据分析的9大编程语言

 数据处理和数据分析的9大编程语言
有关大数据的话题一直很火热。伴随着信息的爆炸式增长,大数据渗透到了各行各业,广泛应用于公司中,同时也使得传统的软件比如 Excel 看起来很笨拙。数据分析不再只是书呆子的事,同时其对高复杂性分析、实时处理的需求也比以往更加庞大。
那么筛选海量数据集最优的工具是什么呢?我们咨询了一些数据黑客关于他们在数据分析的核心工作中最喜欢的编程语言和工具包。
R 语言
这份名单如果不以 R 开头,那就是彻头彻尾的疏忽。自 1997 年起,作为一门免费的,可替代 Matlab 或 SAS 等昂贵统计软件的语言,R 被抛弃。
但是在过去的几年中,它却成了数据科学的宠儿—甚至成了统计学家、 华尔街交易员、生物学家和硅谷开发者必不可少的工具。 随着其商业价值的不断增长和传播,诸如谷歌、Facebook、 美国银行和纽约时代周刊都在使用。
R 简单易用。通过 R ,短短几行代码就可以筛选复杂的数据集,通过成熟的模型函数处理据,制作精美的图表进行数据可视化。简直就是 Excel 的加强灵活版。
R 最大的价值就是围绕其开发的活跃的生态圈: R 社区在持续不断地向现存丰富的函数集增添新的包和特性。据估计 R 的使用者已经超过 200 万人,最近的一项调查也显示 R目前是数据科学领域最受欢迎的语言,大约 61% 的受访者使用 R(第二名是 Python, 占比39%)。
在华尔街,R 的使用比例也在不断增长。美国银行副总裁Niall O’Connor 说:“以往,分析员通常是熬夜研究 Excel 文件,但是现在 R 正被逐渐地应用于金融建模,尤其是作为可视化工具。R 促使了表格化分析的出局。”
作为一门数据建模语言, R 正在走向成熟,尽管在公司需要大规模产品的时候 R 能力有限,也有些人说它已经被其他语言替代了。
Metamarkets 公司的 CEO Michael Driscoll 说:“ R 擅长的是勾画,而不是搭建,在 Google 的 page rank 算法和 Facebook 的好友推荐算法实现的核心中是不会有 R 的。工程师会用 R 进行原型设计,再用 Java 或者 Python将其实现。”
Paul Butler 在 2010 年用 R 构建了一个著名的 Facebook 世界地图,证明了 R 在数据可视化上的强大能力。然而他并不经常使用 R。
Butler 说:“由于在处理较大数据集时缓慢且笨拙,R 在行业中已经有些沦为明日黄花了 ”
那么使用什么作为它的替代呢?看下去。
Python
如果 R 是个有点神经质的可爱的极客,那么 Python 就是它容易相处的欢快的表弟。融合了 R 快速成熟的数据挖掘能力以及更实际的产品构建能力, Python 正迅速地获得主流的呼声。 Python 更直观,且比 R 更易学,近几年其整体的生态系统发展也成长得很快,使其在统计分析上的能力超越了之前的 R 语言。
Butler 说:“Python 是行业人员正在转换发展的方向。过去两年里,很明显存在由 R 向 Python 转化的趋势”
在数据处理中,通常存在规模和技巧的权衡,Python 作为一个折中出现了。 IPython notebook 和NumPy 可以用于轻量工作的处理, 而 Python 则是中级规模数据处理的有力工具。丰富的数据交流社区也是 Python 的优势,它提供了大量的Python 工具包和特性。
美国银行利用 Python 开发新产品以及基础设施接口,同时也用于处理金融数据。O’Donnell 说:“Python 用途宽广且灵活,所以人们蜂拥而至”。
然而, Driscoll 也提到它并不是高性能的语言,偶尔才会用于装配驱动大规模的核心基础设施。
JULIA
最主流的数据科学处理语言包括 R、 Python、 Java、 Matlab和 SAS。但是这些语言仍然存在一些不足之处,而Julia 正是待以观察的新人。
对大规模商用来说, Julia 还是太晦涩了。但在谈到其取代 R 和 Python 领先地位的潜力的时候,数据极客们都会变得很激动。 Julia 是一门高级的,非常快的函数式语言。速度上比 R 快, 可能比 Python 的扩展性更高,且相对易学。
Butler 说:“Julia 正在快速上升。最终将可以用 Julia 完成任何 R 和 Python 可以完成的事”。
如今的问题是 Julia 太“年轻”了。 其数据交流社区仍处在早期发展阶段,在没有足够的包和工具之前是不足以与 R 和 Python 竞争的。
Driscoll 说:“Julia 很年轻,但正在积攒力量而且未来很可观”。
JAVA
在硅谷最大的科技公司里,Java 和基于 Java 的框架构成了其底层的技术骨架。Driscoll 说:“如果深入观察Twitter,Linkedin 或者 Facebook,你会发现 Java 是他们公司数据引擎架构的基础语言”。
Java 并没有 R 和 Python 那样的数据可视化的能力, 同时也不是最好的用于统计模型的语言。但是如果需要进行原型的基础开发和构建大规模系统, Java 往往是最好的选择。
HADOOP 和 HIVE
为了满足数据处理的巨大需求,基于 Java 的工具群涌而现。 作为基于 Java 的框架,Hadoop 在批处理领域成为热点。Hadoop 比其他处理工具速度要慢,但是它非常精确且被广泛的应用于后台分析,它很好的融合了 Hive, 一个运行在 Hadoop 上的基于查询的框架。
SCALA
Scala 是另一个基于 Java的语言,和 Java 很相似,它正在逐渐成长为大规模机器学习或高级算法的工具。它是函数式语言,也能够构建健壮的系统。
Driscoll 说:“Java 就像是直接用钢筋进行搭建, Scala 则像是在处理黏土原材料,可以将其放进窖中烧制成钢筋”。
KAFKA 和 STORM
当需要快速、实时分析时怎么办?Kafka 可以帮助你。它已经发展了大概五年时间,但最近才成为一个流处理的流行框架。
Kafka 诞生于 Linkedin 公司的内部项目,是一个快速查询系统。至于 Kafka 的缺点呢? 它太快了,实时的操作也导致了自身的错误,且偶尔还会遗失信息。
Driscoll 说:“在精度和速度之间总需要做权衡,所以硅谷所有的大公司一般都双管齐下: 用 kafka 和 Storm 进行实时处理,用 Hadoop 做批处理系统,虽然会慢一点但却十分精确”。
Storm 是另一个用 Scala 写的框架,且它在硅谷以擅长流处理而受到极大的关注。毫无疑问, Twitter, 一个对快速消息处理有着巨大兴趣的公司会收购了 Storm。
荣幸的提到:
MATLAB
MATLAB 已经存在很长时间了,尽管价格昂贵,但它仍在某些特定领域被广泛使用: 机器学习研究、信号处理、图像识别等领域。
OCTAVE
Octave 与 Matlab 非常相似,只不过它是免费的。然而除了信号处理的学术圈之外很少见到使用。
GO
GO 是另外一个获得关注的新手。它由 Google 开发,与 C 有一定渊源,且在构建稳定系统方面与 Java 和 Python 展开了竞争。
 

  发表留言
电子邮箱: *
聯繫電話: *
验证码:
  最新留言
[ LIST | TOP ]